Some Multi-sublinear Operators on Generalized Morrey Spaces with Non-doubling Measures
نویسندگان
چکیده
In this paper the boundedness for a large class of multisublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calderón-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.
منابع مشابه
Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces
In this paper, we obtain bounded criteria on certain weighted Morrey spaces for the commutators generalized by some sublinear integral operators and weighted Lipschitz functions. We also present bounded criteria for commutators generalized by such sublinear integral operators and weighted BMO function on the weighted Morrey spaces. As applications, our results yield the same bounded criteria fo...
متن کاملAdams-spanne Type Estimates for Certain Sublinear Operators and Their Commutators Generated by Fractional Integrals in Generalized Morrey Spaces on Heisenberg Groups and Some Applications
In this paper we consider the Spanne type boundedness of sublinear operators and prove the Adams type boundedness theorems for these operators and also give BMO (bounded mean oscillation space) estimates for their commutators in generalized Morrey spaces on Heisenberg groups. The boundedness conditions are formulated in terms of Zygmund type integral inequalities. Based on the properties of the...
متن کاملAnisotropic Herz-morrey Spaces with Variable Exponents
In this paper, the authors introduce the anisotropic Herz-Morrey spaces with two variable exponents and obtain some properties of these spaces. Subsequently as an application, the authors give some boundedness on the anisotropic Herz-Morrey spaces with two variable exponents for a class of sublinear operators, which extend some known results.
متن کاملEquivalent norms for the ( vector - valued ) Morrey spaces with non - doubling measures
In this paper under some growth condition we investigate the connection between RBMO and the Morrey spaces. We do not assume the doubling condition which has been a key property of harmonic analysis. We also obtain another type of equivalent norms.
متن کاملMorrey spaces for non-doubling measures
We give a natural definition of the Morrey spaces for Radon measures which may be non-doubling but satisfy the growth condition. In these spaces we investigate the behavior of the maximal operator, the fractional integral operator, the singular integral operator and their vector-valued extensions.
متن کامل